AN EXTREMAL PROBLEM ON THE SET OF NONCOPRIME DIVISORS OF A NUMBER

BV

P. ERDÖS, M. HERZOG AND J. SCHÖNHEIM

ABSTRACT

A combinatorial theorem is established, stating that if a family A_1, A_2, \ldots, A_s of subsets of a set M contains every subset of each member, then the complements in M of the A's have a permutation C_1, C_2, \ldots, C_s such that $C_i \supset A_i$. This is used to determine the minimal size of a maximal set of divisors of a number N no two of them being coprime.

1. Introduction and results

Many theorems on intersections of sets have been generalized for entities more general than sets. A first such result is that of De Brujn, Van Tengbergen and Kruijswijk [1]. They established a theorem on *maximal sets of divisors of a number N, no member of which divides another member.* If N is square free, this is equivalent to Sperner's theorem on *the maximal set of subsets of a given set, no subset containing another one.* Other results in the same direction have been obtained in [2, 3, 4]. Two of us [6] generalized in the same sense the following result of $\lceil 5 \rceil$:

THEOREM 1. *If* $\mathscr{A} = \{A_1, A_2, \cdots, A_m\}$ is a family of (different) subsets of a *given set M,* $|M| = n$ *, such that*

(1)
$$
A_i \cap A_j \neq \emptyset, \text{ for every } i, j
$$

then

a) $m \leq 2^{n-1}$

and for every *n* there are $m = 2^{n-1}$ such subsets.

b) if $m < 2^{n-1}$ then additional members may be included in $\mathscr A$, the enlarged *family still satisfying* (1).

Received April 2, 1970

REMARK 1. If $m = 2^{n-1}$, then the set M of all subsets of M is partitioned into $\mathcal{M} = \mathcal{A} \cup \mathcal{F}$, where $\mathcal F$ consists of the complements with respect to M of the members of $\mathscr A$.

The result in [6] mentioned above is the following:

THEOREM 2. If $\mathscr{D} = \{D_1, D_2, \cdots, D_m\}$ is a set of divisors of an integer N *whose decomposition into primes is* $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$ and

$$
(2) \t\t\t (D_i, D_j) > 1, for every i, j
$$

then, denoting $\alpha_1 \alpha_2 \cdots \alpha_n = \alpha$

a)
$$
m \leq f(N) = \frac{1}{2} \sum_{I} \max \left\{ \prod_{v=1}^{\mu} \alpha_{iv}; \alpha / \prod_{v=1}^{\mu} \alpha_{iv} \right\},
$$

where the summation is over all subsets $I = \{i_1, i_2, \dots, i_n\}$ *of* $\{1, 2, \dots, n\}$ *, the product corresponding to the empty set being comsidered as I; and for every N there are f(N) such divisors.*

b) *If*

(3)
$$
m < g(N) = \alpha - 1 + \frac{1}{2} \sum_{i} \min \left(\prod_{\nu=1}^{\mu} \alpha_{i\nu}; \alpha / \prod_{\nu=1}^{\mu} \alpha_{i\nu} \right)
$$

then additional members may be included in \mathscr{D} , the enlarged set still satis*fying* (2).

REMARK 2. If N is square free this result is equivalent to Theorem 1. Then $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha = 1$ and $f(N) = g(N) = 2^{n-1}$.

REMARK 3. The example of the divisors of 180 which are multiples of 5 shows that for certain N's $g(N)$ is best possible. But $\mathcal{D} = \{2^2 \cdot 3 \cdot 5 \cdot 7; 2 \cdot 3 \cdot 5 \cdot 7; 2^2 \cdot 3 \cdot 5; 2 \cdot 3 \cdot 5;$ $2^{2} \cdot 3 \cdot 7$; $2 \cdot 3 \cdot 7$; $3 \cdot 5 \cdot 7$; $2^{2} \cdot 5 \cdot 7$; $2 \cdot 5 \cdot 7$; $3 \cdot 5$; $3 \cdot 7$; $5 \cdot 7$ } contains 12 members while $g(420) = 9$. In both examples the number of members in \mathscr{D} is $\alpha_n \prod_{i=1}^{n-1} (\alpha_i + 1)$ i.e. equals the number of divisors of N which are multiples of p_n —and in the second example not every member is divisible by $p_n = 7$. In both examples the α_i 's are supposed to be ordered as in Lemma 1.

Remark 3 makes part 6 of Theorem 2 appear not too illuminating. This is remedied in the present paper by establishing the minimal size of a set $\mathscr D$ which satisfies the assumptions of Theorem 2 and cannot be enlarged. This is formulated in the following theorem:

THEOREM 4. If $\mathscr{D}, |\mathscr{D}| = m$, is a set of divisors of $N = p_1^{a_1} \cdots p_n^{a_n}$,

$$
\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n,
$$

no two members of the set being coprime and if no additional member may be included in $\mathscr D$ without contradicting this requirement then

(5)
$$
m \geq \alpha_n \prod_{i=1}^{n-1} (\alpha_i + 1).
$$

REMARK 4. (5) is best possible, the right side representing the number of divisors of N being multiples of p_n . Two such divisors are clearly not coprime. The final observation in Remark 3 shows that there are other sets of divisors satisfying (5) with equality.

The proof of Theorem 4 depends on the following combinatorial theorem and on Lemma 1.

THEOREM 3. Let A and M be sets,
$$
A \subset M
$$
. Denote $\overline{A} = M - A$. If $\mathscr{F} = \{A_1, A_2, \dots, A_s\}$ is a family of sets satisfying

(i) $A_i \subset M$, $i = 1, 2, \dots, s$

(ii) $X \subset A_i \Rightarrow X \in \mathcal{F}$

then there exists a permutatuion C_1, C_2, \dots, C_s of $\overline{A}_1, \overline{A}_2, \dots, \overline{A}_s$ such that

 $C_i \supset A_i$.

DEFINITION. A family of sets $\mathcal{F} = \{A_1, A_2, \dots, A_s\}$ has the property $\mathcal{P}(M)$ if (i) and (ii) hold.

LEMMA 1. Let M be the set $M = \{1, 2, \dots, n\}$ and let $\alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_n$ be *positive integers. Denote* $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$, $\bar{A} = M - A$.

If $\mathscr F$ is a family of sets having property $\mathscr P(M)$ and if

$$
(6) \tA\in\mathscr{F} \Rightarrow \tilde{A}\notin\mathscr{F},
$$

then

$$
\alpha_n \sum \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_t} \leq \sum \alpha/\alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_t}
$$

where the summation is over $\{i_1, \dots, i_t\} \in \mathcal{F}$.

2. Proofs

PROOF OF THEOREM 3. For $s = 1,2$ the theorem is true. Let $s = s_0 > 2$ and suppose by induction that it is true for $s \leq s_0 - 1$. Let a be a fixed element contained in at least one member of \mathscr{F} . Denote by B'_1, B'_2, \cdots, B'_r the members of \mathscr{F} containing the element a, then $B_i = B'_i - a$, $i = 1, 2, \dots, r$ are also members of \mathscr{F} . Denote by $B_{r+1}, B_{r+2}, \dots, B_{r+q}$ the other members of \mathscr{F} , if any. Since $s_0 = 2r + q$ the families B_1, B_2, \dots, B_r and B_1, B_2, \dots, B_{r+q} have fewer members than s_0 , and since both have the property $\mathcal{P}(M)$, by the induction hypothesis, there is a permutation of $\bar{B}_1, \bar{B}_2, \cdots, \bar{B}_r$ say C_1, C_2, \cdots, C_r and a permutation of $\overline{B}_1, \overline{B}_2, \cdots, \overline{B}_{r+q}$ say $D_1, D_2, \cdots, D_{r+q}$ such that $C_i \supset B_i$ $(i = 1, 2, \cdots, r)$ and $D_i \supset B_i$ $(i = 1, 2, \dots, r + q)$. It follows that $D_i \supset B'_i$ $(i = 1, 2, \dots, r)$, $C_i - a \supset B_i$ $(i = 1, \dots, r)$ and since $C_i = \overline{B}_i$ implies $C_i - a = \overline{B}'_i$

$$
D_1, D_2, \cdots D_r, C_1 - a, \cdots, C_r - a, D_{r+1}, \cdots, D_{r+q}
$$

is the required permutation of the eomplements of the members of \mathscr{F} .

PROOF OF LEMMA 1. By Theorem 3 each term of the first sum in (7) divides a corresponding term of the second sum. Moreover, by (6) each such factor is proper and therefore by (4) each term may be multiplied by α_n .

PROOF OF THEOREM 4. Define $\mathscr{A} = \{(j_1, j_2, \dots, j_k) \mid p_{j_1}^{\beta_1} \dots p_{j_k}^{\beta_k} \in \mathscr{D}$ for some $\beta_i > 0$, $i = 1, \dots, k$ and let M be the set of all subsets of $M = \{1, 2, \dots, n\}$. Then by the maximum property of \mathscr{D} ,

$$
m = \sum_{\mathcal{A}} \alpha_{j_1} \alpha_{j_2} \cdots \alpha_{j_k},
$$

where the summation is over $\{j_1, j_2, \dots, j_k\} \in \mathcal{A}$, and

 $|\mathcal{A}| = 2^{n-1}$ by Theorem 1.

Furthermore, since $\mathscr A$ cannot contain a set and its complement, the set $\mathscr F$ of all complements of members of $\mathscr A$ has no member in common with $\mathscr A$ and

(8) ~ = dU~-

is a partition of M . It follows also that

$$
m = \sum_{\mathscr{A}} \alpha_{j_1} \alpha_{j_2} \cdots \alpha_{j_k} = \sum_{\mathscr{F}} \alpha / \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k}
$$

where the second summation is over $\{i_1, i_2, \dots, i_r\} \in \mathcal{F}$. We have to prove

(9)
$$
\sum_{\mathscr{F}} \alpha/\alpha_{i_1} \cdots \alpha_{i_t} \geq \alpha_n \prod_{n=1}^{i=1} (\alpha_i + 1).
$$

If $p_n \in \mathcal{D}$, (9) holds obviously with equality, while $p_n \notin \mathcal{D}$ means $n \in \mathcal{F}$. Denote by \mathscr{A}_n and by \mathscr{F}_n the families of sets in \mathscr{A} and \mathscr{F} respectively containing n, and by \mathcal{F}^* the family obtained by deleting *n* from each member of \mathcal{F}_n . Denote also by \mathscr{A}' and \mathscr{F}' the families of sets in \mathscr{A} and \mathscr{F} respectively not containing *n*.

$$
m = \sum_{\mathscr{F}'} \alpha/\alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_r} + \sum_{\mathscr{F}_n} \alpha/\alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_r},
$$

and since

$$
\sum_{\mathscr{F}'} \alpha/\alpha_{i_1} \cdots \alpha_{i_t} + \sum_{\mathscr{F}_n} \alpha_{i_1} \cdots \alpha_{i_t} = \alpha_n \prod_{i=1}^{n-1} (\alpha_i + 1),
$$

in order to show (9) it is sufficient to prove

$$
\sum_{\mathscr{F}_n} \alpha/\alpha_{i_1} \cdots \alpha_{i_r} \geq \sum_{\mathscr{F}_n} \alpha_{i_1} \cdots \alpha_{i_r}
$$

i.e.

$$
\sum_{\mathscr{F}^*} \alpha/\alpha_{i_1} \cdots \alpha_{i_\tau} \alpha_n \geq \alpha_n \sum_{\mathscr{F}^*} \alpha_{i_1} \cdots \alpha_{i_\tau}.
$$

Observe that (10) $\mathscr{F} \in \mathscr{P}(M)$ and hence $\mathscr{F}^* \in \mathscr{P}(M-n)$. For (10), let $B \in \mathscr{F}$ then by (8) $\bar{B} \in \mathscr{A}$, so $\mathscr{D} \subset B$ implies $X \in \mathscr{F}$. The assumptions of Lemma 1 are satisfied by \mathscr{F}^* . It follows that

$$
\sum_{\mathscr{F}^*} (\alpha/\alpha_n)/\alpha_{i_1} \cdots \alpha_{i_\tau} \ge \alpha_{n-1} \sum_{\mathscr{F}^*} \alpha_{i_1} \cdots \alpha_{i_\tau} \ge \alpha_n \sum_{\mathscr{F}^*} \alpha_{i_1} \cdots \alpha_{i_\tau}
$$

and the proof is complete.

Final remark

It would be of intetest to determine all sets $\mathscr D$ satisfying the assumptions of Theorem 4 with $m = \alpha_n \prod_{i=1}^{n-1} (\alpha_i + 1)$.

REFERENCES

1. De Bruijn, Van Tengbergen, D. Kruiyswijk; *On the set of divisors of a number,* Nieuw Arch. Wisk. 23 (1949-51) 191-193.

2. J. Schönheim, A generalization of results of P. Erdös, G. Katona, and D. Kleitman concern*ing Sperner's theorem,* J. Combination Theory (to appear).

3. G. Katona, *A generalization of some generalizations of Sperner's theorem,* J. Combination Theory (to appear).

4. J. Marica and J. Schbmheim, *Differences of sets and a problem of Graham,* Canad. Math. Bull. 12 (1969), 635-638.

5. P. Erdös, Chao-Ko, R. Rado, *Intersection theorems for systems of finite sets*, Quart. J. Math. Oxford Ser. 12 (1961), 313-320.

6. P. Erd6s and J. Sch6nheim; *On the set of non pairwise eoprime divisors of a number,* Proceedings of the Colloquium on Comb. Math. Balaton Fiired, 1969 (To appear).

DEPARTMENT OF MATHEMATICS TEL AvIv UNIVERSITY TEL AVIv

412